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Determination of Residual Stress in 
Coatings by a Membrane Deflection 
Tech n iq ue 
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University of Massachusetts, Amherst, M A  07003, USA 

(Received April 21,1994; in final form October 28,1994)  

A membrane deflection technique has been developed to measure the isotropic residual stress in biaxially- 
constrained coatings. The technique has been demonstrated on various materials, including polyimide, latex 
rubber and photoresist coatings. Stress values obtained from membrane deflection compared well with 
results obtained from time-averaged vibrational holographic interferometry except for values obtained from 
samples where rigidity effects were found to be important. A criterion based on the thickness, rigidity, stress 
and sample radius is also discussed, establishing the applicability of the technique to samples of low rigidity. 

KEY W O R D S  residual stress; residual stress measurement; membranes; coatings; polyimides; photoresists 

1. INTRODUCTION 

Residual stress is a key driving force for failure in organic coatings. Most organic coatings 
develop in-plane residual stresses as a result of changes in temperature, solvent content 
and/or chemistry during processing under constrained conditions. In many cases these 
stresses are significant and often lead directly to delamination or fracture of the coating. 
As a result, in order to understand fully the mechanisms of failure in a particular 
coating it is important to know the magnitude of the. residual stress in the coating. 

Various techniques can be used to determine residual stresses in thin films without 
prior knowledge of the constitutive properties of the coating material. Each of the 
techniques has various advantages and disadvantages depending on the system one is 
studying and on the amount of investment one is willing to make. The most widely 
accepted technique is based on the bending of an underlying substrate.' This technique 
is carried out by applying a coating to a thin, metallic or ceramic substrate. When the 
coating is cured, the stress developed in the coating will result in bending of the 
substrate. By knowing the deflection and the bending rigidity of the substrate, the 
residual stress may be calculated. This technique is versatile and is amenable 
to application at different temperatures and under many different environments. However, 
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one of the main disadvantages of this technique is that the bending displacements must 
be comparable with the thickness of the coating. Although these displacements usually 
can be measured through the use of strain gages or optical techniques, the range of 
stresses measurable by this technique for a given substrate can be limited. 

Another class of stress measurement techniques utilizes the physics of membranes. In 
these techniques, the substrate is removed from the coating in a geometrically-defined 
region while maintaining the dimensional constraints on the sample, thus turning the 
coating into a drum head. Since the coating and substrate do not mechanically interact 
away from the edges, the original state of stress in the coating is not affected by the 
removal of the substrate.2 Although this paper will describe only one technique of 
substrate removal for sample preparation, many other techniques have been shown to 
be equally useful.j-* 

The state of stress in the constrained membrane can be measured by using a few 
different One of these techniques which has proven to be successful is 
vibrational time average holographic interfer~metry.~-~ The basic principle behind 
this technique is to find the resonant frequencies and modes of vibration of the 
membrane that can then be related back to the state of stress with only knowledge of 
the mass density of the membrane material. This is accomplished by combining the 
membrane vibration theory with holographic interferometry. This combination is 
especially powerful since it enables one to determine the entire state of stress in the 
membrane. The technique can also be applied to membranes under anisotropic stresses 
and recently the technique has been modified to allow measurements on rigid materials 
as One of the disadvantages of this technique has been that measurements 
require a vacuum or low density gaseous atmosphere to reduce the damping effect of 
the surrounding medium during ~ i b r a t i o n . ~  Therefore, measuring coating stresses in 
dense gaseous or liquid environments is difficult and requires mathematical correc- 
tions. The apparatus required for this technique is also involved and relatively 
expensive. 

If one is reasonably sure that they are dealing with isotropic stresses, another 
approach is the blister technique whereby a pressure gradient is applied across the 
membrane and the residual stress is determined by measuring the resulting membrane 
deflection.’-’O Knowledge of the sample material properties is not required and the 
technique is more amenable to application under different temperatures and environ- 
ments than vibrational techniques. This technique has been shown to be successful for 
the measurement of residual stresses in metallic and polymeric thin films and it has 
frequently been used in the measurement of coating adhesion as  ell.^.'^ However, 
when dealing with thin organic coatings, measurement of the membrane displacements 
requires the use of optical techniques and it has been our experience that the apparatus 
also needs to be isolated from environmental pressure changes (such as closing doors 
and air conditioners) due to the small differential pressures often involved in the 
measurement. 

In this paper, we will present yet another residual stress measurement similar in 
concept to the blister test described above. In this technique, a flat circular probe of 
radius, a, pushes in the center of a constrained circular membrane with a radius, b, as 
shown in Figure 1. If the bending rigidity of the sample is small then there are no 
bending stresses associated with the deflection and the restoring force on the probe is a 
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FIGURE 1 Schematic of membrane deflection technique. 

function of only the residual stress in the membrane. The residual stress can be 
determined from knowledge of the load and the resulting probe displacement. The 
advantages of this technique are: (i) no knowledge of material properties is required 
(once non-rigidity is assured), (ii) measurements can be made with relative ease using 
standard equipment, and (iii) utilization in the presence of various environments, e.g., 
solvents, humidities, or various temperatures, is possible. 

THEORY 

A force balance performed at the edge of the probe (Fig. 2) reveals that the restoring 
force, p ,  is related to the stress in the membrane, o? the thickness, t, and the angle of the 
deflected membrane at the probe edge with respect to the probe surface, 8: 

P = 2nd CJ sin (8). (1) 

If 8 is small then one can make the approximation: sin(8) x - uI, = - lim+, (du/dr), 
where r is the radial position in the membrane and u is the out-of-plane deflection of the 
membrane at r. Substituting into equation (1) and rearranging one finds: 

P o=  -- 
2natub’ 

The term, u:, can be found using the membrane equation which in its general form (with 
zero rigidity and excluding momentum effects) can be expressed as: 
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P 

FIGURE 2 Close in schematic of probe edge. 

where r and 0 are the radial and angular coordinates and q is related to the transverse 
load on the membrane. In the case of a circular symmetric probe pushing into the center 
of a circular membrane the load is supported at the outer circumference of the probe. 
Thus, q is defined as: 

10 r # a  

and equation (3) reduces to: 

aZU l a u  
- + -- = 0 ( r  # a). 
dr2 r a r  

(4) 

Applying the boundary conditions, u(a) = u, and u(b)  = 0, one finds the displacement 
profile and the slope of the displacement profile to be: 

Since bending rigidity is ignored: 

(7) , . du u, u, = lim- = ~ 

dr aln(a/b)' 

Substituting equation (7) into equation (2) the following equation is obtained: 

P 
g =  -- In (alb). 

2nt u, 

The stress in the membrane can easily be determined by measuring the load, P ,  
resulting from a given probe deflection, u,, or by taking the slope of the load versus 
deflection profile for a number of different deflections. 
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EXPERIMENTAL 

1. Sample Preparation 

The techniques used to prepare constrained membrane samples in this study are 
identical to those presented by Maden and F a r r i ~ . ~  PMDA-ODA polyimide coatings 
were prepared by both thermal and chemical curing techniques. Thermally-cured 
polymide films were prepared by spin coating 15 wt% polyamic acid solutions in N,N’- 
dimethylacetamide on to tin-coated steel substrates followed by curing at 200°C in a 
vacuum hot plate oven for 1 hour. Chemically-cured polyimide films were prepared by 
mixing in stoichiometric amounts of acetic anhydride and P-picoline into the polyamic 
acid solution prior to spin coating. After the solution was centrifuged for one minute to 
eliminate air bubbles, it was spin cast and subjected to the same thermal treatment as 
the thermally-cured coatings. 

Photoresist coatings were prepared by laminating a dry film polyacrylate photo- 
resist to tin-coated steel substrates. The coatings were exposed to ultraviolet light by an 
ultraviolet curing oven supplied by UV Process Supply Inc. The oven was equipped 
with a D-bulb, medium-pressure, mercury arc lamp with an intensity of 300 watts per 
inch (1 18 watts per cm) (exposure dosage: 0.25 J/cm2). Samples were developed with an 
aqueous Na,CO, solution (1 wt% Na2C03.H,0) for 3 minutes followed by rinsing 
with water. The coatings experienced an ultraviolet cure, dosage of 4 J/cm2, followed by 
a thermal cure at 150°C for 1 hour in a ventilated oven. 

Constrained membranes were made from the polyimide and photoresist coatings by 
adhering flat, steel washers (40 mm ID, 75 mm OD) to the coatings with “2-ton’’ epoxy 
adhesive, then placing the entire assemblies into a small bath of mercury. The tin 
coating amalgamates with the mercury releasing the polymeric coatings from the 
substrate creating drumhead-like membranes constrained by the steel washers. Since 
tin melts at 232”C, samples prepared on tin-coated steel substrates are limited to 
thermal treatments less than 220°C. Samples requiring higher thermal treatment may 
be prepared on silver-coated substrates. A schematic of the sample preparation is 
shown in Figure 3. 

Rubber membrane samples were made by simply biaxially stretching a latex rubber 
film to different draw ratios then adhering them to the steel washers with Super GlueTM. 

II. Stress Measurement 

Measurements in this study were made on two different instruments: an InstronTM 
hydraulic tensile tester and a DynastatTM dynamic mechanical tester. These instru- 
ments provided the possibility of performing measurements at sub-ambient as well as 
high-temperature environmental conditions. In both cases, simple fixtures were made 
to hold membrane samples in place on the cross-heads and probes were attached 
directly to the load cells. A probe consists of a threaded 1/8-inch (3.2 mm) steel rod with 
a 2 mm diameter steel ball bearing attached to the end. The bearing contacts the center 
of a 4mm diameter disk that rests in the center of the 40mm diameter membrane 
sample as shown in Figure 4. The rounded probe in contact with a flat disk allows for 
correction of any asymmetry in the probe. 
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1 Steel Washer, 

FIGURE 3 Schematic of sample preparation process. 

The most accurate method of determining the stress was to push the probe into the 
sample at a constant rate, then measure the slope of the resulting load versus deflection 
profile. The raw data for a few typical coatings are presented in Figure 5. Using this 
technique only a relative value of the displacement is needed, eliminating the need for 
determining zero displacement. In most cases, the measurements were begun with the 
probe just contacting the membrane with a slightly positive load. A “saw-tooth” 
shaped displacement input was applied to the samples with periods between 10 and 45 
seconds and typical maximum deflections between 10 and 40 pm to insure that in-lane 
stress changes due to the deflection were insignificant. Since in-plane stresses resulting 
from the deflection are small, the measurement is independent of the rate of deflection. 
As observed in Figure 5,  the restoring force on the probe was found to be proportional 
to the deflection and the maximum loads measured typically ranged between 3 and 40 
grams depending on the stresses and sample thickness. All measurements were 
determined from an average of three cycles. 

Stress measurements from membrane deflection were compared with measurements 
using holographic interferometry in order to verify the accuracy of the deflection 
technique. Both measurements were made on the same samples. The resonant frequen- 
cies of the stressed membranes were found by vibrating the sample at different 
frequencies under vacuum. The frequencies of the various samples are identified by 
superimposing the holographic image of a vibrating sample over a stationary sample 
image, thus producing interference patterns indicative of the mode of sample vibration. 
For a circular membrane, the modes of vibration are dictated by the zeroes of Bessel 
functions and frequencies at which the modes occur determine the stress in the 
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/ 

FIGURE 4 Schematic of membrane deflection fixture. 

membrane through the simple relation: 

where p is the membrane density, w is the measured frequency of vibration, b is the 
sample radius and Z,, is the Zth zero of the corresponding nth order Bessel function. The 
reader is referred to references 3-5 for a more detailed description of the holographic 
interferometry technique. The accuracy of the holographic stress measurement is 
estimated to be on the order of _+ 10% and we have found the measurements to be 
quantitatively consistent with uniaxial stress measurements made on both polyimide 
and photoresist For the purpose of this discussion we will treat the results of 
the holographic stress measurements as the true magnitudes of biaxial stress in the 
samples tested. 
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FIGURE 5 Typical load/displacement responses for a few typical coatings. 

RESULTS 

The results of measurements made on various coatings using both the membrane 
deflection and holography techniques are shown in Table I. Measurement results from 
both membrane deflection and holography were found to be self-consistent with typical 
standard deviations of less than f 5%. Stress measurement results from the membrane 
deflection technique were very consistent with those obtained from holography on the 
polyimide, polyurethane and latex rubber membranes. However, stresses measured on 
the photoresist samples using membrane deflection were consistently 20 to 50% lower 
than stresses measured by holography on the same samples. Comparison of the 
measurement results with the modulus and thickness of the samples (also shown in 
Table I) reveals that the deviations occur in samples with both high moduli and large 
thickness suggesting that the zero-rigidity assumption behind this technique is violated 
in these samples. The 50% lower apparent stress values was a recurring result in many 
of the samples tested with moderate rigidity using the deflection technique. 

This conclusion was surprising since the rigidity corrections for these samples in the 
holography technique are very small.6 In addition, the presence of large rigidity in 
samples tends to increase the resonant vibration frequencies of those samples, resulting 
in apparent stress measurements from the holographic technique higher than the true 
stresses in the samples. Based on this evidence, the presence of sample rigidity was 
expected to cause a slightly higher apparent stress measurement using the deflection 
technique as well. 
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Rigidity Effects 

In order to explain this discrepancy and to determine the conditions under which 
sample rigidity is important, it was necessary to model further the deflection technique 
including both in-plane stress and rigidity effects. The force balance for the symmetric 
bending of a rigid plate with an in-plane stress is given by:13 

P = - ~ I T ~ ~ C T U ~  + 2 ~ a D  + -u,” - - U’ [ fE at a ]  

where u, t ,  IS and P have been defined previously and D is the bending rigidity of the 
sample defined as: 

Et3 
D =  

12(1 - VZ) 

for a circular sample with a tensile modulus E and Poisson’s ratio v. Note that 
equation (10) is similar to the force balance used earlkr in equation (1) with an added 
term for rigidity, Once again, the deflection profile must be found to provide the 
derivatives of the deflection profile at the probe edge required in equation (10). 

The deflection profile can be found by solving a more general form of the membrane 
equation (equation (3)) in which a term for bending rigidity is added: 

(12) DV4u - atV% = q(r, 0) 

where q(r, 0) is once again defined as: 

r = a  

The solution to equation(12) is rather complicated and as a result is shown in the 
Appendix. In addition to the displacement boundary conditions used in the solution to 
equation (3) it is also necessary to impose three more boundary conditions. The first 
boundary condition is a clamped condition at the outer boundary resulting in u’(b) = 0. 
The other two are a statement of continuity at the probe edge which is met by imposing 
the condition: limrLo du/dr = limrt, du/dr and lirnrLa d2u/dr2 = limrt, dZu/dr2. Note that 
these boundary conditions disappear in the limit of zero rigidity. In fact, the reader will 
recall that the solution to the membrane equation has a discontinuity in the slope of the 
deflection profile at the probe edge. This is a clue to the measured discrepancies noted 
above. 

The resulting solution for the deflection profile of a rigid plate under in-plane tension 
is: 

0 5 r I a: u(r) = u, + A ,  [I,(R) - Z,(A)] 
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where A,, B ,  and B, are constants defined in the Appendix, ZJR) and K , ( R )  are the nth 
order modified Bessel functions of the first and second kind, A, B and R are dimension- 
less quantities defined, respectively, as: R = rk, A = ak and B = bk and k is defined as: 

The term k characterizes the relative amount of rigidity in the sample. When k = 0, the 
stress term in equation (10) disappears and equation (13) reduces to the solution of the 
symmetric bending of a rigid circular plate given by: 

(b2 + r2)(b2 - a 2 )  + 2(a2 + r2)b21n(a/b) 
b4 - u4 + 4a2 b2 ln(a/b) 

0 5 r 5 a: u(r) = u, 

(15) 
(b2 - r2)(b2 + a 2 )  + 2(a2 + r2)b21n(r/b) 

b4 - a4 + 4a2b21n(a/b) 
a I r I b u(r)  = u, 

As k appioaches infinity the rigidity term in equation (12) disappears and equation (13) 
describes the deflection profile of a membrane given by equation (6). To demonstrate 
this more fully, the calculated deflection profiles and first derivatives for the membrane, 
plate and combination solutions are shown in Figure 6 for a range of k values. The 
profiles are calculated for a = 2 mm, b = 20 mm and u, = 1 pm. The range of k values 
can be generated by varying Q, t or D with equivalent effects on the profile. Note that for 
most values of k the first derivative of the deflection profile is continuous over the entire 
radius of the sample. However, as k becomes largea discontinuity develops at the probe 
edge becoming consistent with the membrane solution. 

In order to see the effects of the deflection profile on the restoring force, P, it is helpful 
to divide the restoring force into a stress component, P,, and a rigidity component, P,. 
The stress component is defined exactly the same way as it was for the force balance in 
the membrane solution and the rigidity component is defined as the extra term added to 
the force balance in equation (10): 

P,  = - 2nat oub 

where: P = P, + P,. A plot of these two components is shown in Figure 7 as a function 
of k together with calculated restoring forces for the membrane and plate solutions. 
These curves were calculated using the same sample dimensions and deflection used to 
calculate the profiles in Figure (6). When varying k for these calculations the stress and 
thickness were held constant at 10MPa and 100pm, respectively, while only the 
rigidity was varied. 

Both plots in Figure 7 indicate a transition occurring in the region of k - 100 to 
1000m-'. For small values of k the rigidity component of the restoring force matches 
the restoring force for the plate solution. The rigidity component is also much larger 
than the stress component, indicating that the total restoring force for the exact 
solution approaches the restoring force for the plate solution under these conditions. 
However, for large values of k the stress component of the restoring force does not 
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FIGURE 6 Deflection profile and 1st derivative for membrane, plate and exact solutions for LI = 2mm, 
b = 20mm and u, = 1 pm. 

approach the restoring force for the membrane solution but approaches a value of 
exactly one-half of the restoring force predicted by the membrane solution. In addition, 
the rigidity component of the restoring force does not continue to decrease with 
increasing k but also approaches a value of exactly one-half of the restoring force for the 
membrane solution. 
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Restoring Force (g) 
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FIGURE 7 
20mm, stress 10 MPa and thickness 100pm using a probe with radius 2mm. 

Plots of calculated restoring force uersus k for a 1 pm deflection of a sample with a radius of 

This behavior at large values of k can also be verified analytically by using 
asymptotic approximations for the Bessel functions for large arguments: l4 

ZJR) z (2nR)- '"exp(R) 

K,,(R) x ~(2nR)-~/'exp(-R).  (17) 

Using these approximations, the restoring force components in equation (16) 
reduce to: 

2nutu,AB 
2 ABln(u/b) - 2A - B 

p = -  

211 Du, A3 B 
u2 [2ABln(u/b) - 2A - B]' 

p = -  ' 
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When we substitute the definitions for A and B and let D = 0, the components of the 
restoring force reduce further to: 

7CfJtua p , = p  = -- 
I ln(a/b) (19) 

Comparison of the stress component of the restoring force to the load predicted by the 
membrane (equation (8)) shows the two results to differ by exactly a factor of two. If one 
looks at the deflection profile at the probe edge one finds that the first derivative of the 
profile in the limit of zero rigidty is also one-half the value obtained in the membrane 
solution (equation (7)): 

To make things even more puzzling, when the stress and rigidity components of the 
restoring force are added together in the limit of zero rigidity, one finds the same 
relationship between the total restoring force and probe deflection as found in the 
membrane solution (equation (8)), even though the calculations of the first derivatives 
of the deflection profiles in the two cases differ by a factor of two! 

The ambiguity in the deflection profile can easily be understood by inspection of 
the deflection profiles shown in Figure (6). In the limit of zero rigidity, the maximum 
slope in the deflection profile occurs at the probe edge. A discontinuity exists at 
the probe edge as well. Just inside the probe radius, the slope of the deflection profile 
is zero while just outside the probe radius the slope of the deflection profile takes 
on a finite negative value. However, when even a small amount of rigidity is present, 
the maximum in the slope of the deflection profile moves slightly away from the 
probe edge and the slope of the deflection profile at the probe edge drops to a 
value of one-half of the slope maximum (the average value of the slopes on each 
side of the probe edge). Even though the deflection profile can be accurately described 
by membrane theory everywhere in the sample, membrane theory fails at the 
probe edge when the membrane possesses even a small bending rigidity. This 
behavior does not occur in time-averaged holographic interferometry measure- 
ments. The question that remains is how much rigidity may be present in mem- 
brane samples before large errors are introduced into the membrane deflection 
measurements? 

In order to answer this question, k values were calculated for the samples listed in 
Table I. These values are also listed in the table and a plot of the measured stress 
divided the true stress (measured by holography) is shown as a function of k in Figure 8. 
The plot demonstrates that the rigidity effects on the stress measurement start to 
become important for k < N lo000 m- '. Measurements on samples with 
k > lOOOOrn-' agree with the true stress values to within 

Note that the results shown in Table1 were obtained using a probe radius of 
2mm and a sample radius of 20mm, resulting in a probe-to-sample radius ratio of: 
a/b = 0.1. In order to see the effects of the probe and sample radius on the measurement, 
a number of measurements were made using different probe radii on the two photo- 
resist samples. The results of these measurements, shown in Figure 9, demonstrate 

10%. 
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Measuredmrue Stress 
I .2 
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0.8 

0.6 

0.4 

0.2 

71 

1,OOo 2,000 5,000 10,000 20,000 50,000 100,000 
k (Urn) 

FIGURE 8 Plot of measured stress (by membrane deflection) divided by true stress (measured by 
holography) oersus k. 

Measu redmrue Stress 
1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 0.02 0.04 0.06 0.08 0.1 0.12 

a/b 
FIGURE9 Plot of measured stress (by membrane deflection) divided by true stress (measured by 
holography) versus probe to sample radius ratio (alb). 

that as probes of smaller radii are used, the stresses measured by the membrane 
deflection technique become closer to those measured by holography. Thus, the use 
of smaller diameter probes was found to decrease the amount of error resulting 
from sample rigidity in the membrane deflection measurements. However, it was 
also found that, when making measurements on thin samples with very low rigi- 
dity (k > 10000m-'), the larger diameter probes were more convenient to use 
and resulted in less signal noise due to the larger loads imposed on the sample for a 
given deflection. 
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CONCLUSIONS 

The membrane deflection technique is a relatively simple and straight-forward tech- 
nique for measuring isotropic, biaxial stresses in polymeric coatings. Measurements 
made using this technique were found to agree very well with measurements made 
using time-averaged holographic interferometry for non-rigid samples but were found 
to be inconsistent for samples with moderate rigidity. A rigidity criterion, k, based on 
the rigidity, thickness and residual stress in the sample, was also introduced to 
determine quantitatively when sample rigidity is important for the deflection tech- 
nique. Measurement results indicate that samples with k > - lOOOOm-' may be tested 
successfully with the membrane deflection technique with a sample-to-probe diameter 
ratio of 0.1. It was found that the technique can be extended to samples with lower k 
values smaller probe diameters. 

Establishing of this technique is easily done on tensile testers capable of resolving 
loads on the order of grams and displacements on the order of micrometers. In 
addition, this technique is versatile in that the ambient environment possible for testing 
is unlimited. The presence of various temperatures, humidities or solvents do not affect 
the stress measurements. A simple and versatile technique has been needed, and in 
many application this membrane deflection technique will be highly useful. 
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APPENDIX: Exact Solution for Deflection of a Rigid Plate under In-Plane Stress 

The general solution to equation (12) is: 

u(r) = A,Z,(R) + A,K, (R)  + A,lnr + A, 
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where Ai are constants, I J R )  and K,(R) are the nth order modified Bessel functions of 
the first and second kind and R is a dimensionless quantity defined as: R = rk and 
k = m. This solution can be verified using Frobenius method and is very similar to 
the solution found for the symmetrical bending of a circular plate under lateral 
compression.'' In order to apply this solution to the membrane deflection problem it is 
necessary to break up the membrane surface into two regions: 0 I r I a and a I r I b. 
We will also need to use a separate set of constants to describe the deflection profile in 
the two regions and as a result equation (Al) will be expressed as: 

u(r)  = A,I , (R)  + A,K, (R)  + A,lnr + A, 0 I r I a 

u(r) = B , I , ( R )  + B,K, (R)  + B,lnr + B,  a I r I b. (A2) 
In the region 0 I r I a, Ko(R)  and In r are undefined at r = 0. Therefore, the constants 
A, and A, must be zero and equation A2 reduces to: 

u(r)  = A, I,(R) + A ,  O < r l a  

a I r I b. u(r) = B,I , (R)  + B,K, (R)  + B,lnr + B,  (A31 
If we apply the same boundary conditions that we applied for the membrane solution 
(u(a) = u, and u(b) = 0) equation (A3) can be reduced further: 

u(r)=ua + A1[lo(R)-IO(A)l O < r < a  (A44 

where A and B are defined as : A = ak and B = bk. 

apply three more boundary conditions to the system. The boundary conditions are: 
In order to find the three remaining constant in equation (A4) it is necesssary to 

du du d2u d2u 
= 0, lim- = lim -, and lim- = lim - 

r i a  dr r t o  dr dr2 rTa  dr2 rl, 

and are a result of clamped conditions of the coating at the outer edge and continuity at 
the probe edge. The constants A,, B ,  and B,  can then be found by setting the first 
derivative of equation (A4b) equal to zero at r = b and by setting the first and second 
derivatives of equation (A4a) and (A4b) equal to each other. The three remaining 
constants then become: 

1 
A ,  = ~ , ' I ; { B C I ~ ( A ) K , ( B )  + KO(A)I1(B)I -ACIo(A)K, (A)+  K0(-4)Il(A)I} 

1 
B , =  ua 'I; { BIo(A)K 1 (B)  - A [I, (A)K1 ( A )  + KO (A)I  1 ( A )  I} 
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